logo

黄金城登录地址

文章详情

深技大科研团队首次提出基于超光速等离子体尾波场产生阿秒脉冲的

分享到:
作者来源: 未知 ????? 发布时间:2024-06-09

  近日,深圳技术大学阮双琛教授和周沧涛教授团队在国际上首次提出基于超光速等离子体尾波场产生阿秒脉冲、亚周期相干光激波辐射的物理方案,并阐释了一种由

  电磁波辐射在我们生活中随处可见,与我们的生活息息相关,比如可见光波段的太阳光、灯光,微波波段的手机和WIFI信号,极紫外波段的***光源和高能波段的X射线等等。

  然而自然界的光大多都是非相干光,它们具有复杂的频率、很宽的空间指向和混乱的相位。上世纪60年代人类发明了第一个相干光源—激光。

  对于相干光,由于其所包含的各光谱成分具有相干性,各成分的相位差是固定的,因此可以实现光脉冲的调制和压缩,从而获得持续时间极短、峰值功率极高的相干光源。

  激光这种相干光源问世不久就变得无处不在了,从科研、工业和军事到通讯、娱乐和艺术,以及我们的日常生活,处处都可以看到激光的重要应用。

  激光技术的发展及其应用也催生了多项诺贝尔奖,比如2018年的诺贝尔物理学奖颁给了发明啁啾脉冲激光放大技术的Gerard Mourou和Donna Strickland教授,该技术使得激光亮度(功率密度)提升约10个数量级黄金城登录地址,超过太阳光亮度约21个数量级;而今年的诺贝尔物理学奖则授予了阿秒脉冲光的发明者Pierre Agostini、Ferenc Krausz以及Anne L’Huillier教授,他们发明了一种产生阿秒脉冲光的方法,这种光脉冲非常短,足以捕获原子和分子内部演变的图像。

  (a)自然界的光源;(b)人类创造的相干光源-激光;(c)超音速飞机引起的声激波;(d)辐射源产生激波的原理示意图。

  相干光源产生的关键是锁相,即让每个参与辐射的微观粒子之间的相位相同,激光的产生就是基于爱因斯坦提出的受激辐射原理,即粒子数反转的原子会释放出同入射光子相位一致的出射光子;而自由电子激光这种超大科学装置是基于电子束的微聚束效应,从而保证每个电子的运动相位一致。

  在自然界中,存在着另外一种波的锁相机制——激波。例如,当超音速飞机飞行速度超过空气中的音速时会产生声激波离子交换柱,这是因为飞机头部在不同时刻产生的声波以球形波前向外扩散时,沿着一个特殊角度(契伦科夫角度)的相位前沿是锁定的。

  同理,如果让辐射源超过光速,就可以产生一种新的相干电磁波辐射——光激波。然而让同一辐射源在真空中超光速是不可能的,因为狭义相对论告诉我们任何物体的运动都不可能“超光速”。

  近年来,深圳技术大学研究团队正大力推进国内高校首个大型超强激光综合实验平台(高功率纳秒-皮秒-飞秒激光装置)——辰光系列装置建设。该平台的一个重要研究方向就是研发新型相干辐射光源并开展相关应用研究。

  近期,该团队从相干辐射基本原理出发,提出了一种基于电子集体作用的全新相干辐射机制:通过相对论电子束与具有缓变上升密度梯度的等离子体相互作用,可以激发一个尺寸逐渐变小的等离子体空泡(空泡尺寸与等离子体密度成负相关),不同位置处的等离子体电子在空泡尾端反弹并在此辐射,由于空泡纵向尺寸逐渐缩小离子斑,其尾端前进的集体速度大于驱动电子束速度(接近光速),达到“超光速”条件,因而不同电子在此处产生的辐射沿着契伦科夫角度相干叠加形成光激波。

  该辐射光源具有非常独特的性质:不仅脉冲宽度极短,达到阿秒尺度,并且强度很高,与传播距离的平方成正比,同时具有极佳的空间指向性、极小的角散、稳定的载波包络相位和超宽的频率调谐范围。

  (a)相对论电子束打到等离子体中在空泡尾端产生光激波的示意图;(b)大型超算数值模拟中看到的超光速空泡尾端的光激波辐射。

  上述工作阐释了一种电子束驱动的全新相干辐射机制,突破了经典相干辐射理论中要求电子束尺寸远小于辐射波长的限制离子敏感器。同时离子,该工作为相干光源产生提供了一种简单可行的物理实验方案,有望在台面尺寸上产生高品质的阿秒亚周期激光脉冲,在活体组织细胞的阿秒光谱学、超快分子操控和诊断、电子阿秒动态度量、拍赫兹超高频率信号处理等应用研究中产生重要影响。

  此外,该工作开发了国内首个远场时域相干辐射的并行计算程序,解决了传统模拟方法中数值色散、近远场变换噪声等瓶颈问题,实现了高频辐射的高时空分辨自洽模拟,也为新型相干辐射源的开发提供了新的技术方法。 该成果是深圳技术大学高能量密度物理研究团队继2021年12月和2023年5月发表《物理评论快报》之后楼观中国道文化展示区,在电子束驱动相干辐射产生方面取得的又一项重要突破。

  值得一提的是,葡萄牙科学家与该团队几乎同时提出了类似的物理机制和方案,相关工作被《自然》旗下期刊《Nature Photonics》接收立柱。 本研究得到了国家科技部重点研发计划、国家自然科学基金项目、深圳市重点实验室组建项目以及深圳市优秀青年基金项目的资助与支持。相关模拟工作在深圳技术大学先进材料测试技术研究中心的近千万亿次/秒超算仿真模拟平台上完成。

  文章出处:【微信号:光电资讯楼观道温泉,微信公众号:光电资讯】欢迎添加关注!文章转载请注明出处。

  非理想的负斜率,沉积过程应能够实现“自下而上的生长”行为。在本研究中,利用

  增强原子层沉积(PE-ALD)过程在沟槽结构中自下而上的生长楼观台国家森林公园。采用n2和氨

  预处理进行无缝间隙fll工艺的生长抑制 /

  的表面波来散热,是一个重要的突破。 韩国科学技术学院(KAIST)宣布,机械工程系Bong Jae Lee教授的研究小组在世界上

  是一种高能量状态的物质,其中原子或分子中的电子被从它们的原子核中解离,并且在整个系统中自由移动。这种状态

  羽流成像 /

  对于提高加工技术离子磨削、开发创新设备以及加深对材料物理特性的理解都有重大研究意义。这种影响尤其体现在硅材料表面

  对硅材料加工过程成像 /

  基于GaN的高电子迁移率,晶体管,凭借其高击穿电压、大带隙和高电子载流子速度,应用于高频放大器和高压功率开关中。就器件制造而言,GaN的相关材料,如AlGaN,凭借其物理和化学稳定性,为

  进行原子层蚀刻的研究 /

  光捕获技术是提高太阳能电池光吸收率的有效方法之一,它可以减少材料厚度,从而降低成本。近年来,表面

  增强光捕获技术 /

  是一种带电粒子与电中性粒子混合的物质,其具有多种独特的物理性质,因此在许多领域具有广泛的应用,例如聚变能源、

  实验中的应用有哪些 /

  激元的新型成像技术能够以增强的灵敏度观察纳米颗粒。休斯顿大学纳米生物光子学实验室的石伟川教授和他的同事正在研究纳米材料和设备在生物医学、能源和环境方面的应用。该小组利用

  清洗在封装生产中的应用 /

  背景 Adi Salomon 教授的实验室主要致力于了解纳米级分子与光的相互作用,并构建利用光传感分子的设备。该小组设计并制造了金属纳米结构,并利用它们通过与表面

  纳米结构的光谱成像 /

  工程应用产学研融合发展。 交流会期间,西南某院在论文【模块化紧凑型高压电源系统的研制】中

  物理,我国建成了新一代“人造太阳”装置中国环流三号装置。要提高中性束注入

  正在致力于将光子学和纳米技术用于新的应用和设备。研究人员正在研究通过控制

  蚀刻变得更有必要。为了防止蚀刻掩模下的横向蚀刻,我们需要一个侧壁钝化机制。尽管AlCl和AlBr都具有可观的蒸气压,但大多数铝蚀刻的研究

  蚀刻率的限制 /

  基于Arm Cortex-CM85内核的RA8D1作为控制器 通过MIPI DSI实现LVGL显示

  重磅!英特尔发布intel3制程至强6能效核处理器,赋能数据中心能效升级

  I.MX6ULL-飞凌 ElfBoard ELF1板卡 - 如何在Ubuntu中编译OpenCV库(X86架构)

  嵌入式学习-飞凌ElfBoard ELF 1板卡 - 如何在Ubuntu中编译OpenCV库

  无刷电机用的单电阻采样的FOC,拿天线贴着电机线或者贴近采样芯片,电机就会停转

生产实力 解决方案 联系我们
Copyright 2017 黄金城网站登录 All Rights Reserved